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A definition of the distance on the orbit spaces of topological groups acting continuously 
on metric spaces is applied to define some metric properties of the reduced nuclear 
configuration spaces. Straightforward proofs are given and a comparison with former 
results is carried out. 

Let (E, p)  be a metric space, i.e. a set E with a distance function p [1]. We 
assume that there is a topological group G acting continuously on E [1]. The result 
of  the action of an element t of  G on a point x of E is an element t .  x of E. 

Let E/G denote the space of  orbits of  G in E, i.e. the set of  mutually disjoint 
subsets of  E defined as 

G .  x =  {s. x: s ~G}.  (1) 

We assume that E/G is a Hausdorff  space, for which it is sufficient and necessary 
that for every orbit K ~ E / G  the "rectangle" {(x, y): x, y ~K} is a closed subset of  
the product space E x E. Then the orbits are closed subsets of  E. 

We assume that p is invariant with respect to the action of  G, which means 
that for every s ~ G and x, y ~ E the distance function obeys the equation 

p(s . x, s . y) = p(x, y). (2) 

Before showing how the above introduced definitions can be applied to the 
reduced nuclear configuration space, we shall quote two general results. 

*Permanent address: Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/19, 
60-179 Poznan, Poland 

© J.C. Baltzer AG, Science Publishers 



206 Z. Zimpel, Metric properties 

PROPOSrI~ON 1 

The function d from the orbit space E/G in R+ given by 

d(K, L) = inf{p(x, y): x EK, y eL}  

defines a distance function on E/G. 

(3) 

PROPOSITION 2 

For any x ~ K and y ~ L, 

d(K, L) = inf{p(s,  x,y):  s ~G} = inf{p(x, s . y ) :  s EG}. (4) 

The proofs of both propositions are given in the appendix. 

Proposition 1 states that E/G can be given a distance function defined 
by eq. (3). This procedure was applied by Mezey to the case of the reduced nuclear 
configuration space, where E = R 3N and G is the group generated by all proper 
rotations and translations. Our new proof of his result, based on proposition 2, is 
also included in the appendix to demonstrate the ease with which d can be shown 
to be a distance function. 

Another possibility of defining a distance on the nuclear configuration space 
was suggested in our recent paper [3]. There, we chose a symmetry-related reference 
frame (for example, one defined by three axes of fourfold symmetry in the case of 
octahedral symmetry) in which positions of nuclei have t o b e  considered. Hence, 
instead of having a reduced configuration space with isolated configurations of 
nuclei, we deal with a full configuration space in which it is important to know 
about orientation of configuration with respect to a particular reference frame. Next, 
we carry out permutations of identical nuclei, taking the orbit of this permutation 
group to be the actual configuration. 

To be more specific, let the vectors v = (r 1, r 2 . . . . .  rN) and v" = (r~, r~ . . . . .  r~¢) 
define two configurations ~" and ~" of N identical nuclei. These configurations are 
orbits of the group Gis o generated by proper rotations and translations according to 
ref. [2] or of the symmetric group S s of all permutations of identical nuclei according 
to ref. [3]. Then the distance between these two configurations can be defined either 
by eq. (3) or by eq. (4). 

However, as was discussed in our previous work [3], we can also determine 
the notion of essential symmetry of nuclear configurations by optimizing the choice 
of the symmetry-related reference frame (for example, the choice of rotation axes 
or reflection planes) in order to minimize the distance between a given configuration 
and its image by a considered transformation. We have found that this distance is 
equal to the distance between the orbits of the group generated by proper rotations 
and translations, which naturally operates on the space of orbits of S N. This is also 
equivalent to saying that the degree of essential asymmetry (or, more specifically, 
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chirality) proposed in ref. [3] is based on the metric defined in ref. [2] for the 
reduced nuclear configuration space with a minor modification, namely that the 
configurations resulting from permutations of identical nuclei are the same. In 
table 1, we summarize the metric properties of the nuclear configuration spaces 
defined by Mezey [2] and by us [3]. 

Table 1 

Comparison of the metric properties of nuclear configuration spaces. G~,o denotes the group of 
isometries generated by translations T(3) and proper rotations SO(3) (the largest connected compact 
sub-group of the group of isometries) of R 3N. S N is the symmetric group of all permutations of N 
nuclei, herein assumed to be identical. The action of Gist and S ~¢ on R 3~ is defined as in ref. [3]. 

Mezey's [2] Ours [3] 

initial configuration space E R 3N R 3N 

( / ( / distance function R 3 p(x, y) = ~ (xi - Yl)2 p(x, y) = ~ (xi - Yi)2 
i=1 i=1 

group G Giso = SO(n)T(n) S N 

orbit space F = E/G F = R~/Giso F = R~/S N 

distance function defined by eq. (3) defined by eq. (4) 

relationship: orbit spaces F/S N F/Gin 

relationship: distance functions eq. (3) or (4) applied to F/S N eq. (3) or (4) applied to F/Gist 

For an arbitrary dimension n of the Euclidean space (n = 3 in the case of  
nuclear configurations considered above) in which a configuration of particles must 
be studied, another conclusion can be drawn from the above discussion, namely that 
taking an appropriate symmetry-related reference system as described in ref. [3] we 
can find a natural representation for each orbit of RnN]Gis o by a point in R ~ .  This 
can be achieved by choosing a system for which the degree of asymmetry, e.g. a 
declination from the octahedral symmetry, attains its minimal value. The actual 
reduction of  the number of independent variables (from nN to n(n - 1)/2 + ( N -  n)n 
for N >  n) then results from the number of constraint conditions (equal to 
n + n(n - 1)/2 or less down to n for the determination of the origin of a coordinate 
system) they must obey. This approach can be very useful for computational purposes. 

Appendix 

Proof  o f  proposition 2 

Let two arbitrary points x ~ K and y ~ L be given. Thus, we have 
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d(K, L) = inf{p(x, y) : x ~ K and y ~ L} = inf{p(s • x, t .  y) : s, t ~ G} 

= inf{p((t-ls) • x, y): s, t ~ G} = inf{p(s,  x, y)" s ~ G} 

= inf{p(x, s -1 • y)" s ~ G} = inf{p(x, s .  y)" s ~ G}. [] 

Proof o f  proposition 1 

Using the equivalence of  definitions (3) and (4), it is easy to show that d is 
a distance function. The condition d(K, K) = 0 is obviously fulfilled. Let K and L 
be two orbits of  E/G such that d(K, L) = 0. Let x E K and y ~ L be two arbitrary 
points within each orbit. Thus, the equation 

0 = d(K,L)  = in f{p ( s ,  x ,y ) :  s EG} 

implies that there is a sequence (sn),,~ 1 c G such that the sequence pn = p(s,,,  x, y) 
converges to 0. This is equivalent to saying that the sequence (s,, • x),~l c K converges 
to y E L in E, However,  since K and L are closed in E, this is possible if and only 
if K = L .  

Now, let K, L and M be three orbits of  E/G, and let x E K, y E L and z E M 
be three arbitrary points of  these orbits. Thus, we obtain 

d(K, M) = inf{p(s • x, z): s ~ G} = inf{p(s • x, t .  z) : s, t ~ G} 

< inf{p(s • x, y) + p(y, t .  z) : s, t ~ G} 

= inf{p(s • x, y) : s ~ G} + inf{p(y, t .  z) : t ~ G} 

= d(K, L) + d(L, M) ,  

which proves the triangle inequality. Since the last condition, namely 

d(K, L) = d(L, K) for any L, K ~ E/G, 

is trivially satisfied, we conclude that d is a distance function. [] 
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